873 research outputs found

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30

    Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector

    Get PDF
    Results of a search for H → τ τ decays are presented, based on the full set of proton-proton collision data recorded by the ATLAS experiment at the LHC during 2011 and 2012. The data correspond to integrated luminosities of 4.5 fb−1 and 20.3 fb−1 at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV respectively. All combinations of leptonic (τ → `νν¯ with ` = e, µ) and hadronic (τ → hadrons ν) tau decays are considered. An excess of events over the expected background from other Standard Model processes is found with an observed (expected) significance of 4.5 (3.4) standard deviations. This excess provides evidence for the direct coupling of the recently discovered Higgs boson to fermions. The measured signal strength, normalised to the Standard Model expectation, of µ = 1.43 +0.43 −0.37 is consistent with the predicted Yukawa coupling strength in the Standard Model

    Measurement of the top pair production cross section in 8 TeV proton-proton collisions using kinematic information in the lepton plus jets final state with ATLAS

    Get PDF
    A measurement is presented of the ttˉt\bar{t} inclusive production cross-section in pppp collisions at a center-of-mass energy of s=8\sqrt{s}=8 TeV using data collected by the ATLAS detector at the CERN Large Hadron Collider. The measurement was performed in the lepton+jets final state using a data set corresponding to an integrated luminosity of 20.3 fb1^{-1}. The cross-section was obtained using a likelihood discriminant fit and bb-jet identification was used to improve the signal-to-background ratio. The inclusive ttˉt\bar{t} production cross-section was measured to be 260±1(stat.)23+22(syst.)±8(lumi.)±4(beam)260\pm 1{\textrm{(stat.)}} ^{+22}_{-23} {\textrm{(syst.)}}\pm 8{\textrm{(lumi.)}}\pm 4{\mathrm{(beam)}} pb assuming a top-quark mass of 172.5 GeV, in good agreement with the theoretical prediction of 25315+13253^{+13}_{-15} pb. The ttˉ(e,μ)+jetst\bar{t}\to (e,\mu)+{\mathrm{jets}} production cross-section in the fiducial region determined by the detector acceptance is also reported.Comment: Published version, 19 pages plus author list (35 pages total), 3 figures, 2 tables, all figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2013-06

    Measurement of the charge asymmetry in dileptonic Decays of top quark pairs in pp collisions at √ s = 7 TeV using the ATLAS detector

    Get PDF
    A measurement of the top-antitop (tt) charge asymmetry is presented using data corresponding to an integrated luminosity of 4.6 fb −1 of LHC pp collisions at a centre- of-mass energy of 7 TeV collected by the ATLAS detector. Events with two charged leptons, at least two jets and large missing transverse momentum are selected. Two observables are studied: A tt/C, based on the reconstructed tt final state. The asymmetries are measured to be A ll/C = 0.024 +/- 0.015 (stat.) +/- 0.009 (syst.) Att/C = 0.021 +/- 0.025 (stat.) +/- 0.017 (syst.) The measured values are in agreement with the Standard Model predictions

    Measurements of long-range azimuthal anisotropies and associated Fourier coefficients for pp collisions at √s=5.02 and 13 TeV and p+Pb collisions at √sNN=5.02 TeV with the ATLAS detector

    Get PDF
    ATLAS measurements of two-particle correlations are presented for √s=5.02 and 13 TeV ppcollisions and for √sNN=5.02 TeV p+Pb collisions at the LHC. The correlation functions are measured as a function of relative azimuthal angle Δϕ, and pseudorapidity separation Δη, using charged particles detected within the pseudorapidity interval |η|2, is studied using a template fitting procedure to remove a “back-to-back” contribution to the correlation function that primarily arises from hard-scattering processes. In addition to the elliptic, cos (2Δϕ), modulation observed in a previous measurement, the pp correlation functions exhibit significant cos (3Δϕ) and cos (4Δϕ) modulation. The Fourier coefficients vn, n associated with the cos (nΔϕ) modulation of the correlation functions for n=2–4 are measured as a function of charged-particle multiplicity and charged-particle transverse momentum. The Fourier coefficients are observed to be compatible with cos (nϕ) modulation of per-event single-particle azimuthal angle distributions. The single-particle Fourier coefficients vn are measured as a function of charged-particle multiplicity, and charged-particle transverse momentum for n=2–4. The integrated luminosities used in this analysis are, 64nb−1 for the √s=13 TeV pp data, 170 nb−1 for the √ s = 5.02 TeV pp data, and 28 nb−1 for the √sNN = 5.02 TeV p+Pb data

    Observation and measurement of Higgs boson decays to WW∗ with the ATLAS detector

    Get PDF
    We report the observation of Higgs boson decays to WW∗ based on an excess over background of 6.1 standard deviations in the dilepton final state, where the Standard Model expectation is 5.8 standard deviations. Evidence for the vector-boson fusion (VBF) production process is obtained with a significance of 3.2 standard deviations. The results are obtained from a data sample corresponding to an integrated luminosity of 25  fb−1 from √s=7 and 8 TeV pp collisions recorded by the ATLAS detector at the LHC. For a Higgs boson mass of 125.36 GeV, the ratio of the measured value to the expected value of the total production cross section times branching fraction is 1.09 +0.16−0.15(stat) +0.17−0.14(syst). The corresponding ratios for the gluon fusion and vector-boson fusion production mechanisms are 1.02±0.19(stat) +0.22−0.18(syst) and 1.27 +0.44−0.40(stat) +0.30−0.21(syst), respectively. At √s=8  TeV, the total production cross sections are measured to be σ(gg→H→WW∗)=4.6±0.9(stat) +0.8−0.7(syst)  pb and σ(VBFH→WW∗)=0.51 +0.17−0.15(stat) +0.13−0.08(syst)  pb. The fiducial cross section is determined for the gluon-fusion process in exclusive final states with zero or one associated jet

    Search for a new resonance decaying to a W or Z boson and a Higgs boson in the ll/lv/vv + bb final states with the ATLAS detector

    Get PDF
    A search for a new resonance decaying to a W or Z boson and a Higgs boson in the ll/lv/vv + bb final states is performed using 20.3 fb −1 of pp collision data recorded at √ s = 8 TeV with the ATLAS detector at the Large Hadron Collider. The search is conducted by examining the W H / Z H invariant mass distribution for a localized excess. No significant deviation from the Standard Model background prediction is observed. The results are interpreted in terms of constraints on the Minimal Walking Technicolor model and on a simplified approach based on a phenomenological Lagrangian of Heavy Vector Triplets

    Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A search is performed for narrow resonances decaying into WW, WZ, or ZZ boson pairs using 20.3 fb−1 of proton-proton collision data at a centre-of-mass energy of √s=8 TeV recorded with the ATLAS detector at the Large Hadron Collider. Diboson resonances with masses in the range from 1.3 to 3.0 TeV are sought after using the invariant mass distribution of dijets where both jets are tagged as a boson jet, compatible with a highly boosted W or Z boson decaying to quarks, using jet mass and substructure properties. The largest deviation from a smoothly falling background in the observed dijet invariant mass distribution occurs around 2 TeV in the WZ channel, with a global significance of 2.5 standard deviations. Exclusion limits at the 95% confidence level are set on the production cross section times branching ratio for the WZ final state of a new heavy gauge boson, W′, and for the WW and ZZ final states of Kaluza-Klein excitations of the graviton in a bulk Randall-Sundrum model, as a function of the resonance mass. W′ bosons with couplings predicted by the extended gauge model in the mass range from 1.3 to 1.5 TeV are excluded at 95% confidence level

    Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb−1 of pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search for heavy neutral Higgs bosons and Z′ bosons is performed using a data sample corresponding to an integrated luminosity of 36.1 fb−1 from proton-proton collisions at √s=13 TeV recorded by the ATLAS detector at the LHC during 2015 and 2016. The heavy resonance is assumed to decay to τ+τ− with at least one tau lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2-2.25 TeV for Higgs bosons and 0.2-4.0 TeV for Z′ bosons. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in benchmark scenarios. In the context of the hMSSM scenario, the data exclude tan β > 1.0 for mA= 0.25 TeV and tan β > 42 for mA=1.5 TeV at the 95% confidence level. For the Sequential Standard Model, ZSSM′ with mZ′< 2.42 TeV is excluded at 95% confidence level, while Z NU′ with mZ ′ < 2.25 TeV is excluded for the non-universal G(221) model that exhibits enhanced couplings to third-generation fermions

    Performance of the ATLAS trigger system in 2015

    Get PDF
    During 2015 the ATLAS experiment recorded 3.8fb−1 of proton–proton collision data at a centre-of-mass energy of 13TeV. The ATLAS trigger system is a crucial component of the experiment, responsible for selecting events of interest at a recording rate of approximately 1 kHz from up to 40 MHz of collisions. This paper presents a short overview of the changes to the trigger and data acquisition systems during the first long shutdown of the LHC and shows the performance of the trigger system and its components based on the 2015 proton–proton collision data
    corecore